Crystal nucleation, growth, and morphology of the synthetic malaria pigment beta-hematin and the effect thereon by quinoline additives: the malaria pigment as a target of various antimalarial drugs.
نویسندگان
چکیده
The morphology of micrometer-sized beta-hematin crystals (synthetic malaria pigment) was determined by TEM images and diffraction, and by grazing incidence synchrotron X-ray diffraction at the air-water interface. The needle-like crystals are bounded by sharp {100} and {010} side faces, and capped by {011} and, to a lesser extent, by {001} end faces, in agreement with hemozoin (malaria pigment) crystals. The beta-hematin crystals grown in the presence of 10% chloroquine or quinine took appreciably longer to precipitate and tended to be symmetrically tapered toward both ends of the needle, due to stereoselective additive binding to {001} or {011} ledges. Evidence, but marginal, is presented that additives reduce crystal mosaic domain size along the needle axis, based on X-ray powder diffraction data. Coherent grazing exit X-ray diffraction suggests that the mosaic domains are smaller and less structurally stable than in pure crystals. IR-ATR and Raman spectra indicate molecular based differences due to a modification of surface and bulk propionic acid groups, following additive binding and a molecular rearrangement in the environment of the bulk sites poisoned by occluded quinoline. These results provided incentive to examine computationally whether hemozoin may be a target of antimalarial drugs diethylamino-alkoxyxanthones and artemisinin. A variation in activity of the former as a function of the alkoxy chain length is correlated with computed binding energy to {001} and {011} faces of beta-hematin. A model is proposed for artemisinin activity involving hemozoin nucleation inhibition via artemisinin-beta-hematin adducts bound to the principal crystal faces. Regarding nucleation of hemozoin inside the digestive vacuole of the malaria parasite, nucleation via the vacuole's membranous surface is proposed, based on a reported hemozoin alignment. As a test, a dibehenoyl-phosphatidylcholine monolayer transferred onto OTS-Si wafer nucleated far more beta-hematin crystals, albeit randomly oriented, than a reference OTS-Si.
منابع مشابه
Screening of Different Extracts from Artemisia Species for Their Potential Antimalarial Activity
The formation of hemozoin (malaria pigment) has been proposed as an ideal drug target for antimalarial screening programs. In this study, we used an improved, cost-effective and high-throughput spectrophotometric assay to screen plant extracts for finding novel antimalarial plant sources. Fifteen extracts with different polarity from three Iranian Artemisia species, A. ciniformis, A. biennis an...
متن کاملScreening of Different Extracts from Artemisia Species for Their Potential Antimalarial Activity
The formation of hemozoin (malaria pigment) has been proposed as an ideal drug target for antimalarial screening programs. In this study, we used an improved, cost-effective and high-throughput spectrophotometric assay to screen plant extracts for finding novel antimalarial plant sources. Fifteen extracts with different polarity from three Iranian Artemisia species, A. ciniformis, A. biennis an...
متن کاملIntroducing New Antimalarial Analogues of Chloroquine and Amodiaquine: A Narrative Review
Antimalarial drugs with the 4-aminoquinoline scaffold such as the important drugs, chloroquine (CQ) and amodiaquine (AQ), have been used to prevent and treat malaria for many years. The importance of these drugs is related to their simple usage, high efficacy, affordability, and cost-effectiveness of their synthesis. In recent years, with the spread of parasite resistance to CQ and cross-resist...
متن کاملMechanisms of hematin crystallization and inhibition by the antimalarial drug chloroquine.
Hematin crystallization is the primary mechanism of heme detoxification in malaria parasites and the target of the quinoline class of antimalarials. Despite numerous studies of malaria pathophysiology, fundamental questions regarding hematin growth and inhibition remain. Among them are the identity of the crystallization medium in vivo, aqueous or organic; the mechanism of crystallization, clas...
متن کاملAntimalarial natural products: a review
Objective: Malaria is an infectious disease commonplace in tropical countries. For many years, major antimalarial drugs consisted of natural products, but since 1930s these drugs have been largely replaced with a series of synthetic drugs. This article tries to briefly indicate that some plants which previously were used to treat malaria, as a result of deficiencies of synthetic drugs, have rev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 129 9 شماره
صفحات -
تاریخ انتشار 2007